TABLE OF CONTENTS

		2	Page
I.	INTRODUCTION		1
II.	SUMMARY VOLUME I		3
III.	EQUIPMENT AND PROCEDURE		8
	Extrusion Tooling		8
	The Hydrostatic Extrusion Operational Sequence		8
	Pressure Control and Measurement		
	High-Pressure Strain-Gage Transducer		
	Sealing Arrangements		
	Room Temperature		
	Temperature Range of 400-500 F		
	Die Design		19
	Lubrication		
	Hydrostatic Fluids		
	Billet Lubricants		
	Billet Conversion Coatings		
	Billet Conversion Coatings	•	LI
IV.	CHARACTERISTICS OF PRESSURE-DISPLACEMENT CURVES		26
V.	ASSESSMENT OF FLUID HEATING EFFECTS DURING COMPRESSION . SECTION I	٠	28
VI.	SUMMARY SECTION I		31
VII	. COLD HYDROSTATIC EXTRUSION OF 7075-0		
	ALUMINUM ROUNDS		36
	Extrusion Ratio		36
	Reliability of Data		38
	Billet Finish		
	Lubrication Systems,		
	Billet Nose Design		
	Stem Speed		43
	Tensile Properties of 7075-0 Aluminum Hydrostatic Extrusions .		46
VII	II. HYDROSTATIC EXTRUSION OF AISI 4340 STEEL ROUNDS		47
	Extrusion Ratio		47
	Fluids and Billet Lubrication at 80 F		
	Billet Lubricants and Coatings		
	Hydrostatic Fluids		
	Billet Surface Finish		

TABLE OF CONTENTS (Continued)

				Page
	Stem Speed),K	T kg	. 58
	Hydrostatic Extrusion of AISI 4340 Steel at			10
	Elevated Temperatures			. 60
	Extrusion at 140 F	the	1	. 60
	Extrusion at 400 and 500 F		٠	. 61
	Tensile Properties of AISI 4340 Steel Hydrostatic Extrusions .			. 63
IX.	HYDROSTATIC EXTRUSION OF Ti-6Al-4V TITANIUM			
	ALLOY ROUNDS			. 65
	Extrusion Ratio		14	. 65
	Lubrication at 80 F			. 65
	Evaluation of Billet Lubricants Without Billet Coatings .		•	. 65
	Evaluation of Billet Lubricants and Billet Coatings			. 70
	Fluids at Room and Elevated Temperatures			. 72
	Billet Lubricants at 400 and 500 F			
	Effect of Temperature	٠		. 73
	Mechanical Properties of Ti-6Al-4V Titanium Alloy Rounds			
	Produced by Cold Hydrostatic Extrusion	•	٠	. 73
X.	HYDROSTATIC COMPACTION AND HYDROSTATIC EXTRUSION OF			
	POWDER COMPACTS OF Ti-6A1-4V ALLOY POWDER		8.4	. 74
	Hydrostatic Compaction of Ti-6Al-4V Titanium Alloy Powder .			. 74
	Hydrostatic Extrusion of Powder Compacts of Ti-6Al-4V			
	Alloy Powder		٠	. 75
XI.	HYDROSTATIC EXTRUSION OF SUPERALLOYS ALLOY 718 AND A286	in the	78	. 76
	Tensile Properties of Hydrostatic Extrusions of Alloy 718 and			3346
	A-286 Superalloys		7	. 76
XII.				
	SINTERED ALUMINUM	٠	٠	. 78
XIII	HYDROSTATIC EXTRUSION OF BRITTLE MATERIALS			. 80
	Extrusion Ratio			. 80
	Die Designs			. 84
	Effect of Die Design, Extrusion Ratio, and Temperature			
	on TZM			. 86
	Evaluation of Die Designs at an Extrusion Ratio of 2.5:1.			. 86
	Controlled-Relief Die - Extrusion Ratio 3.3:1		7	. 86
	Standard Die - Extrusion Ratio 5:1			. 86
	Double-Reduction Die - Extrusion Ratio 4:1			
	Effect of Die Design, Extrusion Ratio, and Temperature			
	on Beryllium			. 89
			-	